Atšķirība starp paralelogrammu un taisnstūri

Atšķirība starp paralelogrammu un taisnstūri
Atšķirība starp paralelogrammu un taisnstūri

Video: Atšķirība starp paralelogrammu un taisnstūri

Video: Atšķirība starp paralelogrammu un taisnstūri
Video: Diy Корабль из конфет Мастер-Класс ☆ Подарки на 23 февраля мужчинам своими руками ☆ Buket7ruTV 2024, Novembris
Anonim

Paralelogramma pret taisnstūri

Paralelogramma un taisnstūris ir četrstūri. Šo figūru ģeometrija cilvēkiem bija zināma tūkstošiem gadu. Šī tēma ir skaidri aplūkota grieķu matemātiķa Eiklida grāmatā “Elementi”.

Paralelogramma

Paralelogrammu var definēt kā ģeometrisku figūru ar četrām malām, kuru pretējās malas ir paralēlas viena otrai. Precīzāk, tas ir četrstūris ar diviem paralēlu malu pāriem. Šis paralēlais raksturs piešķir paralelogramiem daudzus ģeometriskus raksturlielumus.

Attēls
Attēls
Attēls
Attēls

Četrstūris ir paralelograms, ja tiek atrasti šādi ģeometriskie raksturlielumi.

• Divi pretējo malu pāri ir vienādi garumā. (AB=DC, AD=BC)

• Divi pretējo leņķu pāri ir vienādi pēc izmēra. ([latekss]D\cepure{A}B=B\hat{C}D, A\cepure{D}C=A\cepure{B}C[/latekss])

• Ja blakus leņķi ir papildu [latekss]D\hat{A}B + A\hat{D}C=A\hat{D}C + B\hat{C}D=B\hat {C}D + A\hat{B}C=A\hat{B}C + D\hat{A}B=180^{circ}=\pi rad[/latekss]

• Pāris malas, kas atrodas viena otrai pretī, ir paralēlas un vienāda garuma. (AB=DC & AB∥DC)

• Diagonāles sadala viena otru (AO=OC, BO=OD)

• Katra diagonāle sadala četrstūri divos kongruentos trīsstūros. (∆ADB ≡ ∆BCD, ∆ABC ≡ ∆ADC)

Turklāt malu kvadrātu summa ir vienāda ar diagonāļu kvadrātu summu. To dažreiz dēvē par paralelogrammu likumu, un to plaši izmanto fizikā un inženierzinātnēs. (AB2 + BC2 + CD2 + DA2=AC2 + BD2)

Katru no iepriekšminētajiem raksturlielumiem var izmantot kā rekvizītus, ja ir noskaidrots, ka četrstūris ir paralelograms.

Paralelograma laukumu var aprēķināt, reizinot vienas malas garumu un pretējās malas augstumu. Tāpēc paralelograma laukumu var norādīt kā

Paralelograma laukums=pamatne × augstums=AB×h

Attēls
Attēls

Paralelograma laukums nav atkarīgs no atsevišķa paralelograma formas. Tas ir atkarīgs tikai no pamatnes garuma un perpendikulāra augstuma.

Ja paralelograma malas var attēlot ar diviem vektoriem, laukumu var iegūt pēc divu blakus esošo vektoru vektora reizinājuma (krustreizinājuma).

Ja malas AB un AD attēlo attiecīgi vektori ([latekss]\overrightarrow{AB}[/latex]) un ([latekss]\overrightarrow{AD}[/latex]), paralelogramu uzrāda [latekss]\pa kreisi | \overrightarrow{AB}\times \overrightarrow{AD} right |=AB\cdot AD \sin \alpha [/latekss], kur α ir leņķis starp [lateksu]\overright arrow{AB}[/latex] un [latex]\overright arrow{AD}[/latex].

Tālāk ir norādītas dažas paralelograma uzlabotās īpašības;

• Paralelograma laukums ir divreiz lielāks par trijstūra laukumu, ko rada jebkura tā diagonāle.

• Paralelograma laukumu dala uz pusēm ar jebkuru taisni, kas iet caur viduspunktu.

• Jebkura nedeģenerēta afīna transformācija pārņem paralelogramu uz citu paralelogramu

• Paralelogramam ir 2. kārtas rotācijas simetrija

• Attālumu summa no jebkura paralelograma iekšējā punkta līdz malām nav atkarīga no punkta atrašanās vietas

Taisnstūris

Četrstūris ar četriem taisnstūriem ir pazīstams kā taisnstūris. Tas ir īpašs paralelograma gadījums, kad leņķi starp jebkurām divām blakus esošajām malām ir taisni.

Attēls
Attēls

Papildus visām paralelograma īpašībām, ņemot vērā taisnstūra ģeometriju, var atpazīt papildu raksturlielumus.

• Katrs leņķis virsotnēs ir taisns leņķis.

• Diagonāles ir vienāda garuma, un tās sadala viena otru uz pusēm. Tāpēc arī sadalītās sadaļas ir vienādas garumā.

• Diagonāļu garumu var aprēķināt, izmantojot Pitagora teorēmu:

PQ2 + PS2 =SQ2

• Laukuma formula tiek samazināta līdz garuma un platuma reizinājumam.

Taisnstūra laukums=garums × platums

• Taisnstūrī ir atrodamas daudzas simetriskas īpašības, piemēram;

– Taisnstūris ir ciklisks, kurā visas virsotnes var novietot pa apļa perimetru.

– Tas ir vienādstūrveida, kur visi leņķi ir vienādi.

– Tas ir izogonāls, kur visi stūri atrodas vienā simetrijas orbītā.

– Tam ir gan atstarošanas simetrija, gan rotācijas simetrija.

Kāda ir atšķirība starp paralelogrammu un taisnstūri?

• Paralēlogramma un taisnstūris ir četrstūri. Taisnstūris ir īpašs paralelogramu gadījums.

• Jebkura laukumu var aprēķināt, izmantojot formulu bāze × augstums.

• Ņemot vērā diagonāles;

– Paralelograma diagonāles sadala viena otru un sadala paralelogramu uz pusēm, veidojot divus kongruentus trīsstūrus.

– Taisnstūra diagonāles ir vienādas garumā un sadala viena otru uz pusēm; sadalītās sadaļas ir vienāda garuma. Diagonāles sadala taisnstūri divos kongruentos taisnstūra trīsstūros.

• Ņemot vērā iekšējos leņķus;

– paralelograma pretējie iekšējie leņķi ir vienādi. Divi blakus esošie iekšējie leņķi ir papildu

– Visi četri taisnstūra iekšējie leņķi ir taisnstūra leņķi.

• Ņemot vērā malas;

– Paralelograma malu kvadrātu summa ir vienāda ar diagonāles kvadrātu summu (Paralelogrammas likums)

– Taisnstūros divu blakus esošo malu kvadrātu summa ir vienāda ar diagonāles kvadrātu galos. (Pitagora noteikums)

Ieteicams: